
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 25 (2009) 284–303

www.elsevier.com/locate/jfs
Theoretical analysis of hydrostatic implodable volumes
with solid inner structures

J.J. Cor�, T.F. Miller

Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, PA 16804, USA

Received 18 January 2007; accepted 10 April 2008

Available online 7 July 2008
Abstract

The basic analytical theory for hydrostatically caused implosions of spherical volumes, which has been known for

nearly a century, has been extended for the treatment of annular volumes with solid inner structures. Theoretical

analyses are developed that treat the inner structure as infinitely hard, elastically deformable, plastically deformable or

shattering under the influence of the pressure from the surrounding implosion event. Parametric studies are made of the

effect that the inner structure’s geometric and material properties have on the pressure field of the surrounding water. It

is concluded that the pressure waves produced by the imploding volume are significantly affected by the existence of an

inner structure and the inner structure’s physical properties. This is an important consideration in assessing the effect of

an underwater implosion event on nearby structures.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Lord Rayleigh (1917), and subsequently Lamb (1932), defined the basic equations of bubble collapsing theory. This

theory was subsequently modified by other workers to incorporate the internal gas pressure that permitted the analysis

of the oscillating bubble phenomenon. In this theory, the bubble initially contracts under the outside pressure of the

liquid. At some point, the interior gas pressure is increased to the point where it balances the combined hydrostatic and

hydrodynamic heads, and the gas volume stops decreasing. Then the higher relative interior pressure acts to force the

gas bubble radius outward until the exterior hydrostatic pressure is enough to counter the interior gas pressure plus the

gas hydrodynamic head. The bubble motion reverses itself once again, and the bubble begins to contract. This cycle will

continue until losses act to stop it. The gas volume oscillations also produce oscillations in the pressure field of the

surrounding seawater. The oscillating pressure field can serve as an acoustic source, or if sufficiently large, can produce

a pressure wave with sufficient energy to damage nearby structures.

An implodable volume can be defined as any pressure housing, containing a non-compensated compressible volume

of gas at a pressure below the external sea pressure, which has the potential to collapse. There is concern that under the

wrong circumstances, the pressure pulses produced by the collapsing volume can damage nearby submersibles or other

objects. This was dramatically demonstrated in 2001 at the Kamioka Observatory, in its Super-Kamiokande experiment
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A surface area (m3)

C speed of sound (m/s) or circumference (m)

E bulk modulus of elasticity (Pa)

F required function

KL bulk modulus of elasticity (Pa)

p pressure (Pa)

P gas (acoustic) pressure (Pa)

q kinetic energy (m2/s2)

r radius (m)

R implodable volume outer radius (m)

t time (s), thickness (m)

U velocity (m/s)

n solid velocity (m/s)

V volume (m3)

g ratio of specific heats

d differential distance (m)

e strain

m dynamic viscosity (N s/m2)

r density (kg/m3)

s stress (Pa)

f stream function

Subscripts

a acoustic

EQ equilibrium

g gas

H hoop

L liquid or longitudinal

m metal

O reference condition

r radial

V value at shell inner surface

N far field (infinity)

y azimuthal
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dedicated to neutrino research.1 Over 5000 of this facility’s photomultiplier tubes were destroyed in a cascading

underwater implosion initiated by the collapse of a single tube. The importance of the failure of implodable volumes is

also mentioned in the US Navy Unmanned Undersea Vehicle Master Plan (2004):

Ship deployed [Unmanned Undersea Vehicle] UUV systems must meet very stringent requirements to be authorized

for submarine installation, including, but not limited to, shock requirements, battery (or other energy source)

certification, and implodable volume requirements y Obtaining these certifications can result in significant costs

and delays in deploying these systems. Investments should be made early to determine how UUV systems could be

designed and built to cost effectively meet ship certification requirements. [Underlined emphasis is ours.]

However, the analysis procedure associated with defining and evaluating implodable volumes is very conservative (Joint

Fleet Maintenance Manual, 2006):

[An implodable volume is] any pressure housing containing a non-compensated compressible volume at a pressure

below the external sea pressure (at any depth down to the maximum operating depth) which has the potential to

collapse. The outer shell volume is used when calculating the volume of an implodable. Subtracting the volume of

items internal to the implodable is not allowed. Externally mounted lights, gauges, bottles/flasks, spheres/tanks and

beacons are examples of implodable items. [Again, the underlined emphasis is ours.]

Using the above criteria, the energy available from an implodable volume can be approximated by the P–dV work

required to compress the volume such that the interior volume pressure is equal to the hydrostatic pressure. This

approach leads to such misleading statements in the popular press as: ‘‘y The implosion of even a fist-sized volume of

air at Titanic depth would be the equivalent of five sticks of dynamite going off y’’2 Of course, the rate at which the

energy is released does as much to define the explosive effect as the total energy released. Another important

consideration is the presence of non-imploding or energy-absorbing compressible volumes within the outer shell

volume. Safety is clearly a vital consideration when dealing with nearby implodable volumes; however, we feel that

greater physical understanding of the implosion process benefits not only safety, but economic and system performance

considerations as well.

Fluid–structure interactions have been studied previously in related applications. The interaction of an external

explosion with a deformable or collapsible inner structure was investigated by Iakovlev (2004, 2006). The interaction of

a bubble caused by an underwater explosion with an object on the water surface was studied by Zong (2004) and

Klaseboer et al. (2005). Kalumuck et al. (1995) studied bubble interaction with nearby bodies using three-dimensional
1Details of this event were obtained from Fermi News, vol. 24, no. 19, 23 November 2001.
2Quote comes from the article ‘‘Contents Under Pressure,’’ Paula Parisi, Wired Magazine, Issue 6.02, February 1998.
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Fig. 1. Implodable volumes for spherical geometry.
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boundary-element based computer codes. While the analysis of real world geometries in studies such as these requires

substantial computational resources, the objective of the present work is more modest: evaluating the effect of internal

structure on the behavior of spherical implodable volumes, with the goal of eventually assessing the degree of

conservatism of the criteria described above.

In addition to being the unintended source of the spectacular Super-Kamiokande failure discussed above, glass

volumes (in this case spheres) have also been safely employed as acoustic sources for studies of implodable volumes

(Arons et al., 1948; Ghiotto and Penrose, 2000). They are suspended on a cable and at a desired depth are struck by a

weight causing an instantaneous fracturing of the sphere. Implodable volumes are of greater concern to operators of

deep-diving submersibles because the pressure pulse produced may have the potential to damage or sink the vehicle.

Because of the practicality of the analysis of spheres (as models for bubbles and acoustic generators), little interest has

been directed at geometries containing interior non-imploding (or delayed imploding) volumes. However, annular

volumes, or volumes containing non-implodable centers may be of more practical interest as more closely mimicking

implodable volumes that might be formed external to submerged vessels. And while no cylindrical analog exists for the

Rayleigh collapse model presented below, the Rayleigh model has been found to closely approximate the behavior of

large aspect ratio cylindrical geometries, when the proper scaling is applied (Goodwin et al., 1999). Therefore, this paper

explores spherical geometries with inner shells that are infinitely strong, brittle, plastic, or elastic, and house an

additional implodable volume; see Fig. 1.
2. Basic theory—spherical volume with infinitely strong inner structure

Starting with the assumption of an irrotational and incompressible external fluid, its movement can be described with

the Bernoulli equation:

qf
qt
� qþ F ðtÞ ¼

p

r
, (1)

where f is the velocity potential, q is the kinetic energy, p is the liquid pressure, r is the liquid density and F(t) is a

function of time. The velocity potential must satisfy Poisson’s equation in spherical coordinates:

q
qr

r2
qf
qr

� �
¼ 0. (2)

A solution to Eq. (2) is

f ¼
R2

r

� �
dR

dt

� �
, (3)
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where R is the radius of the gaseous space. The velocity of the fluid then is

U ¼ �
qf
qr
¼

R2

r2

� �
dR

dt

� �
. (4)

Substituting the values for f and U into Eq. (1) yields:

1

r
R2 d2R

dt2

� �
þ 2R

dR

dt

� �2

�
1

2

R4

r4

� �
dR

dt

� �2
" #

þ F ðtÞ ¼
p

r
. (5)

Far away from the sphere the pressure is pN, which defines F(t). This substitution gives the final form for the

hydrodynamic equation of fluid motion:

1

r
R2 d2R

dt2

� �
þ 2R

dR

dt

� �2

�
1

2

R4

r4

� �
dR

dt

� �2
" #

¼
p� p1

r
. (6)

At the surface of the gas volume (r ¼ R, p ¼ pg), this becomes:

R
d2R

dt2

� �
þ

3

2

dR

dt

� �2

¼
pg � p1

r
. (7)

For an isentropic expansion/contraction of the ideal gas:

pg

pgO

¼
VO

V

� �g

, (8)

where g is the ratio of specific heats and the subscript O refers to initial conditions. If the gas volume surrounds an inner

concentric spherical shell of radius RV:

pg

pgO

¼
R3

O � R3
V

R3 � R3
V

" #g
. (9)

The final equation of motion for the volume is then

R
d2R

dt2

� �
þ

3

2

dR

dt

� �2

¼
1

r
pgO

R3
O � R3

V

R3 � R3
V

" #g
� P1

( )
. (10)

Eq. (10) is readily solvable using the Runge–Kutta–Nystrom method with a time step on the order of 10�7 s.

Vokurka (1985) showed that the pressure in the liquid surrounding the implodable volume is given by

pa ¼
R

r
Pa þ

1

2

R

r

dR

dt

� �2

�
1

2

R

r

� �4
dR

dt

� �2

, (11)

where pa refers to the local acoustic (local minus hydrostatic) pressure in the liquid and Pa refers to the acoustic pressure

of the gas.

A comparison was made of the predictions using the above-idealized analysis with the measurements of Buogo and

Cannelli (2002), who generated a bubble from an underwater spark located 2.5m below the surface of a water tank. The

variation of the bubble’s radius with time is shown in Fig. 2. Also shown in this figure is the radius predicted for the first

expansion–compression cycle by integrating Eq. (10). The analysis was made using the reported value for the pressure at

the peak radius of 35mm (0.3 bars) as the initial pressure of the collapsing volume, and by setting RV in Eq. (10) to zero.

The radius of the bubble decreases to lower levels in the measurements due to thermal losses and due to the fact that the

experimental bubble was initiated from an energy release, effectively starting from a zero radius, the analysis of which is

beyond the scope of the current analysis. Overall, agreement is close between the experiment and modeling for the

majority of the first bubble cycle.

The first cycle, being the one most important in assessing the damage done to surrounding underwater structures by a

collapsing volume, is the cycle of primary interest in this work. Subsequent attenuation and oscillations in the collapsing

bubble structure, notable fields of enquiry in and of themselves, have secondary importance in considering the damage
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Fig. 2. Comparison of gas bubble radius versus time measurements of Buogo and Cannelli (2002) (symbols) with predictions using the

current analysis (solid line).

Table 1

Sample analysis problem conditions

Initial sphere radius 50 cm

Strong inner shell radius 5 cm

Initial sphere pressure 1 atm

Time increment of calculations 10�7 s

Sphere depth 100m

Liquid medium Water

Gas medium Air
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caused by collapsing underwater volumes. Thus, the irrotational, isentropic analysis described in this paper can be

considered a useful tool over the time scales where the greatest damage can be inflicted on surrounding structures.

An example analysis was made of an implodable spherical volume under the conditions given in Table 1. Fig. 3 shows

the calculated radius for the volume through the first cycle of oscillation. The volume reaches its minimum and returns

to its initial value in approximately 31ms, after which the cycle repeats itself. Also shown in Fig. 3 are results where the

volume depth is at half and twice the baseline depth of 100m. The effect of increasing depth is to decrease both the

period of oscillation and the minimum radius the gas volume. Fig. 4 shows the velocity of the volume’s outer surface for

the baseline depth and half and twice the baseline depth. The peak volume surface velocities increase with depth. Fig. 5

shows how the interior gas pressure varies with time. Also shown are pressures when the initial and shell radii are at half

and twice the baseline value. The peak pressure does not vary appreciably with the radii, but the period of oscillation

increases with the value of the radii. Figs. 3–5 show that the minimum radius, peak velocity and peak pressure all occur

at the same point. Fig. 6 presents a sequence of values of the liquid acoustic pressure, up to the peak pressure, calculated

using Eq. (11). Out to a range of 300 cm from the volume’s center (or approximately 250 cm from the baseline bubble

radius), the acoustic pressure excursions are still at 10 atm.
3. Inner shell deformation or failure

3.1. Stress analysis

For all the analyses in Section 2, the inner shell was considered indestructible and non-deformable. Cases now are

analyzed where these assumptions are removed, and the inner shell is considered to fracture in a brittle fashion, or

deform plastically or elastically. The analyses below are made with the assumption that the inner, solid structure

responds instantaneously to disturbances. This assumption is considered reasonable for the characteristic times of
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Fig. 3. Spherical volume radius under conditions given in Table 1. Dashed lines present results for depth variations from the baseline

value of 100m.
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Fig. 4. Spherical volume surface velocity under conditions given in Table 1. Dashed lines present results for depth variations from the

baseline value of 100m.
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this problem. An iron shell, for instance, has a sonic velocity of 4500m/s, comparable to the sonic velocity in water.

An iron shell of 10mm thickness, for example, would have a characteristic response time on the order of 10�6 s, which is

two-to-three orders or magnitude lower than the typical periods associated with the implodable volume oscillations

analyzed below.

For all cases, the thin-walled assumption is made for computing inner shell stresses. For shells with thickness less

than one-tenth, the inner wall radius, this assumption results in errors of less than 5% of the actual wall stress. For a

thin-walled spherical vessel, the normal stress in the wall is given by

s ¼
1

2
ðpinner � pouterÞ

r

t
, (12)
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where t is the thickness of the vessel wall and the outer pressure is that of the imploding volume surrounding the

inner shell. The wall stresses are principal stresses and it was assumed that failure occurs in one of the shell’s principal

planes.
3.2. Brittle shell

For the case of a brittle shell, when the principal stress exceeds the maximum allowable stress, the shell was assumed

to shatter. Such an assumption might be appropriate for a cast iron or composite material, for instance. When the shell

shatters, the gaseous volume’s outer radius is the radius of the gas volume at the point of failure, R, and it was assumed
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Fig. 8. Spherical volume gas pressure under conditions given in Table 2, assuming a strong inner shell (dashed line) and a brittle inner

shell (solid line).

Table 2

Sample brittle inner shell problem conditions

Initial gas volume radius 50 cm

Brittle shell outer radius 40 cm

Brittle shell thickness 5mm

Initial gas pressure 1 atm

Time increment of calculations 10�7 s

Gas volume depth 100m

Liquid medium Water

Gas medium Air

Shell failure stress 0.33GPa
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that the inner radius became zero. It was assumed that the gas that was in the inner shell, at pinner, and the surrounding

volume, at pgas, mix insentropically, resulting in a new pressure of:

pnew ¼ pinner
RV

R

� �3

þ pgas 1�
RV

R

� �3
" #

; (13)

RV in Eq. (13) is the inner radius of the shell before failure.

The isentropic mixing assumption is one limiting case of conditions inside the gas volume at the point of shell failure.

Another limit on the conditions would be to assume that the pressure is discontinuous between pinner and pgas at the

point of shell failure, creating an imploding shock wave. A detailed analysis of this phenomenon, including its reflection

at the volume center and its interaction with the surrounding liquid, was deemed beyond the current scope of this effort

but is an important venue for future research.

An example problem with a brittle shell was run using the conditions shown in Table 2. The failure stress was chosen

to be that consistent with cast iron. The volume geometry chosen was spherical and was analyzed using the potential

flow solution described in Section 2. It can be seen that the initial gas radius and shell radius are much closer in value

than they were in Table 1. This is because volume varies with the radius cubed, and the effect of shell failure

(or deformation) only becomes significant when the inner shell volume becomes large relative to the initial gas volume.
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Fig. 9. Acoustic pressure in liquid surrounding spherical volume under conditions given in Table 2, assuming a strong inner shell (a)

and brittle inner shell (b). In order of increasing magnitude, the data for (a) are presented at 9.33, 9.59, 9.67, 9.73, 9.79, and 9.87ms (the

time of peak magnitude of the acoustic field). In order of increasing magnitude, the data for (b) are presented at 9.01, 9.25, 9.37, 9.45,

9.49, and 9.53ms (the time of peak magnitude of the acoustic field).

Table 3

Sample plastic inner shell problem conditions

Initial gas volume radius 100 cm

Brittle shell outer radius 88 cm

Brittle shell thickness 8mm

Initial gas pressure 1 atm

Initial inner shell pressure 1 atm

Time increment of calculations 10�7 s

Gas volume depth 300m

Liquid medium Water

Gas medium Air

Material viscosity 3000N s/m2

Plasticity modulus 0.53GPa

Modulus of elasticitya 8GPa

aUsed for elastic shell analysis.
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The analysis was first run assuming an infinitely strong inner shell that was not allowed to fail, and then was run

assuming the shell is brittle. With the brittle shell, failure occurred at 9.5ms at a gas pressure of 83 atm. Fig. 7 shows the

calculated radius for each of these cases. The failure of the shell reduces the minimum gas volume radius and increases

the period of oscillation. Fig. 8 shows a plot of the gas pressure assuming a strong and brittle inner shell. The effect of

shell failure is to reduce the peak gas pressure by over a factor of four.

The effect on the liquid pressure field that a failure of the inner shell would cause is of great concern for nearby

submersibles. A comparison of the liquid pressure field with the strong shell and brittle shell (Fig. 9) shows that the

failure of the shell significantly reduces the acoustic pressure in the water. The times in Fig. 9(b) are centered on the

point of shell failure, which can be identified by the first brittle shell peak in Fig. 8. At a distance of 300 cm the peak

acoustic pressure in the water is reduced by a factor of four when the shell fails by brittle fracture.
3.3. Plastic shell

A model for the plastic deformation of casings under external loads was developed by Tan et al. (2003). Tan et al.

used the following constitutive law for viscoplastic (ignoring elastic) deformation:

sy � sr ¼ sgn
dr2

dt

� �
2K � 4m

dv

dr

� �
, (14)

where sy is the azimuthal stress, sr is the radial stress, dr2/dt is the velocity on the outer surface of the casing, m is the

dynamic viscosity, n is the radial velocity in the casing and sgn is the sign function. Tan et al. also expressed the

conservation of mass and Euler’s equation as:

dv

dr
þN

n
r
¼ 0, (15)

and

rm

dv

dt
þ n

dv

dr

� �
¼

dsr

dr
þ

N

r
ðsr � syÞ, (16)

where N ¼ 1 for cylindrical geometries and N ¼ 2 for spherical geometries, and rm is the density in the casing.

Combining Eqs. (14)–(16), it can be shown that the equation of motion in for the spherical casing is

rmr1 1�
r1

r2

� �
€r1 þ rm 2 1�

r1

r2

� �
�

1

2
1�

r1

r2

� �4
" #( )

ð_r1Þ
2
¼ srðr2Þ � srðr1Þ � sgnð_r2Þ4K ln

r2

r1

� �
�

16

3
m 1�

r1

r2

� �2
" #

_r1
r1
, (17)
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Fig. 13. Acoustic pressure in liquid surrounding spherical volume under conditions given in Table 3, assuming that the inner shell does

not fail or deform (a) and assuming that the inner shell deforms plastically (b). In order of increasing magnitude, the data in (a) are

presented at 8.73, 8.76, 8.77, 8.78, 8.79, and 8.81ms (the time of peak magnitude of the acoustic field). In order of increasing

magnitude, the data in (b) are presented at 8.70, 8.71, 8.72, 8.73, 8.74, and 8.75ms (the time of peak magnitude of the acoustic field).
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where r2 is the outer casing radius and r1 is the inner casing radius. For the current application, sr(r2) is the negative of

the gas pressure of the implodable volume and sr(r1) is the negative of the gas pressure inside the shell, which now varies

as the shell expands or contracts. The overdots refer to the first or second derivative with respect to time. It was

assumed that the inner shell’s initial pressure was the same as the initial pressure of the implodable volume and that it

obeyed the ideal gas law as the inner shell’s volume changed. As the implodable volume expanded or contracted,

Eq. (17) was integrated, using the Runge–Kutta–Nystrom method, to obtain the inner radius of the plastic shell as a

function of time. Assuming the shell material was incompressible, mass conservation was used to calculate the outer

shell radius from the updated value of the inner shell radius.

An example problem was run using the conditions listed in Table 3. Shell material properties were taken from those

reported by Tan et al. To isolate the effect of plastic deformation, the shell was not allowed to fail, although stresses

would be great enough to have done so. Fig. 10 shows the trace of the gaseous volume’s radius versus time when the

inner shell is infinitely strong, and when it is plastic. Fig. 11 shows the corresponding gas pressures for the infinitely

strong and plastic shells. The scale in Fig. 11 has been changed to logarithmic, to better display the pressure traces on

the same graph. It can be seen that the plastic deformation of the shell has a dramatic effect on reducing the maximum

gas pressure inside the implodable volume. Fig. 12 shows the variation of the plastic shell’s outer radius with time. After

the outer gas pressure reaches a critical level, the shell plastically deforms to a new radius. This newly deformed shell
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only decreases in volume slightly under further loading from the outer pressure. This adjustment in radius creates the

dramatic decrease in gas pressure observed in Fig. 11. It is noted in Fig. 12 that the shell has a brief period of zero slope

during its deflection to the smaller radius, and the time of this zero deflection accounts for the double spike in the gas

pressure seen in Fig. 11 before it adjusts to its new, lower level.

A comparison of the liquid acoustic pressure fields assuming a strong and plastic shell is presented in Fig. 13. The

results show that the plastic deformation of the shell reduces farfield pressure excursions by two orders of magnitude.

3.4. Elastic shell

For a purely elastic thin shell, the average azimuthal strain is

� ¼
sy
E

, (18)

where E is the bulk modulus of elasticity. The differential change of circumference (dC) is found from

dC ¼ C� ¼
2psy

E
. (19)

The change in radius is then

dr ¼
dC

2p
¼

rsy
E

. (20)

In terms of the inner shell radius (r1), the inner shell strain is

�1 ¼
dr1

r1
¼

sy
E

. (21)

If the shell material is incompressible, the outer shell radius (r2) must then be (neglecting higher order terms):

�2 ¼ �1
r1

r2

� �3

. (22)

Updated inner and outer radii are then given by

r1ðnewÞ ¼ r1ð1þ �1Þ; r2ðnewÞ ¼ r2ð1þ �2Þ� (23)

An example analysis for an elastic shell was run under the conditions given in Table 3. The modulus of elasticity

chosen was that for iron. The shell was not allowed to fail so that the effect of the elastic deformation could be isolated.

Fig. 14 shows the variation of the gaseous volume’s radius and the shell’s outer radius with time. The gaseous radius

behaves in a manner similar to that found for the plastic shell (Fig. 10), although in Fig. 14 it assumes a smaller
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minimum radius in its oscillations. This is because the shell radius reaches a smaller minimum value than it did in the

plastic case (Fig. 12). The elastic shell, it is also noted, oscillates about a new, lower value after an initial contraction.

Fig. 15 shows the variation of the gas pressure with time assuming an elastic inner shell, with the pressure trace for the

strong inner shell included for reference. The new equilibrium behavior in this figure is similar to that shown in Fig. 11

for the plastic inner shell, although there is a high-frequency oscillation present in Fig. 15 during the first contraction of

the elastic shell.

The results of the analysis of deformable shells indicate there is some non-recoverable work that is done in

compressing the shell to a new equilibrium value. This is true whether the shell is deforms elastically or plastically. The

isentropic assumption for the gas may have to be modified to more closely represent the acoustic behavior of the

imploding volume for these cases.

Fig. 16 shows the calculated liquid acoustic pressure for the case of an elastic inner shell. The scale of this figure was

expanded relative to Fig. 13, so that the pressure excursions could be displayed in detail. The acoustic excursions are

significantly reduced over those found assuming an infinitely strong inner shell (Fig. 13(a)) and the plastic inner shell

(Fig. 13(b)). This is not surprising when the peak gas pressure for the elastic shell (Fig. 15) is compared to the peak

pressure shown for the plastic shell (Fig. 11).
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3.5. Failure of deformable shells

The analysis of the plastic and elastic shells was now modified so that they could both fail. The failure stress was the

value given in Table 2. Failure of the elastic shell occurred at 8.63ms at a pressure of 61.7 atm. Failure of the elastic

sphere occurred at 8.50ms at a pressure of 60.4 atm. At this point, the shell was assumed to have shattered and results

are virtually the same for both the elastic and plastic shells.

Fig. 17 is a plot of the gaseous volume radius and pressure for the case where the shells failed. The maximum pressure

in Fig. 17 is approximately an order of magnitude higher than shown in Figs. 11 and 15 for the plastic and elastic shells.

The work that was done to compress the shells plastically or elastically is now available for compression of the gas
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initial outer shell radius of 10 cm.
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volume, and the pressure in the gas is correspondingly higher. It is also noted that the volume’s period oscillation has

increased relative to the cases of shell deformation without failure.

Fig. 18 shows the acoustic pressure in the surrounding liquid when the shells are allowed to fail. Although the peak

acoustic pressure is increased over that of Figs. 13(b) and 16, it is still significantly reduced over that shown in Fig. 13(a)

for the infinitely strong shell case.

4. Parametric study

4.1. Non-destructible plastic inner shell

A parametric study was made of implodable volumes with a plastic inner structure over a range of conditions. Studies

showed that the structures were relatively insensitive to the values of material viscosity and density chosen, so these
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Fig. 20. Contour plots of maximum acoustic pressure at two times the initial outer volume diameter with an elastic inner sphere with a
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values were assigned values of 7850 kg/m3 and 4000N s/m2. Parameters which were then varied were the outer (pre-

rupture) shell radius, the volume depth below the surface, the ratio of the inner-to-outer radius, and the inner shell

thickness. The acoustic pressure was calculated at a distance of two times the outer shell radius. Fig. 19 is a set of

contour plots for the maximum acoustic pressure at two initial gas volume radii with an initial outer shell radius of

10 cm. Axes plotted are the depth below the surface, the ratio of the initial inner plastic shell radius to the initial outer

gas shell radius, and the material modulus of plasticity. The inner shell thicknesses are reported in percents of the initial

plastic shell radius. The maximum acoustic pressure increases with the ratio of the radius of the inner shell to the initial

radius of the outer volume. This is consistent with the finding discussed in the previous section, that the effect of the

inner structure becomes more pronounced as its radius approaches that of the outer radius. The effect of the modulus of

plasticity also only becomes apparent at high ratios of the inner to outer volume, where the effect of the inner structure
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Fig. 21. Maximum acoustic pressure at two times the initial outer shell radius plotted against depth and the inner-to-outer radius ratio.

The initial outer shell radius is 60 cm and the elastic modulus is 68 900MPa.
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is pronounced. The maximum acoustic pressure increases with depth because at greater depths the gaseous volume is

compressed to a greater degree. Thicker inner shells increased the maximum acoustic pressure by making the inner

structure stronger. The initial outer radius was increased up to 100 cm, but its effect on the final results was small.

4.2. Non-destructible elastic inner shell

A parametric study was made of implodable volumes with an elastic inner structure over a range of conditions.

Parameters which were varied were the outer (pre-rupture) shell radius, the depth below the surface, the ratio of the

inner-to-outer radius, and the inner shell thickness. The acoustic pressure was again calculated at a distance of two

times the initial outer shell radius. Fig. 20 is a set of contour plots for the maximum acoustic pressure at this distance

when the inner shell has an elastic modulus of 68 900MPa. The axes in this figure have been changed to the initial outer

shell radius, depth and ratio of inner to outer radius. Similar trends were shown in the parametric results when using an

elastic modulus up to three times larger than used to generate Fig. 20. The coupling between the results and the value

chosen for the outer shell’s initial radius was found to be stronger than in the case of the plastic shell.

To better isolate the effects at play causing this coupling, the maximum acoustic pressure is plotted versus depth and

the ratio of inner-to-outer radius in Fig. 21. These data are plotted for an outer shell radius of 60 cm and an elastic

modulus of 68 900MPa. The coloring in this figure is included to aid the eye in viewing the results. It can be seen that

the maximum acoustic pressure peaks at different depths at different values for the inner-to-outer radius ratio. Below

this ratio, the pressure build-up in the implosion event is less severe so the maximum acoustic pressure decreases. Above

this peak ratio, the reduction in gas volume becomes large enough that the peak acoustic pressure again decreases.

4.3. Destructible inner shells

Parametric studies were conducted with elastic and plastic inner shells that were allowed to fail. Trends were found to

be very similar whether elastic or plastic inner shells were used. Therefore, the results of the plastic inner shell

parametric study will be presented as representative of both cases. For this study, the material viscosity was 4000

(N s/m2), the material density was 7850 kg/m3, the inner shell thickness was 10% and the plastic modulus was 345MPa.

Results showed relative insensitivity to the outer shell radius, and pronounced ‘‘saddle points’’ in the peak acoustic

pressure at different depths and failure stresses. To investigate these ‘‘saddle points’’ further, data for the outer shell

radius of 60 cm were examined in isolation. Fig. 22 shows a three-dimensional contour plot resulting from this analysis.

As before, the contours are for the maximum acoustic pressure encountered at two initial outer volume radii. In this

figure, the maximum acoustic pressure appears to follow different ‘‘orbits’’ around points in depth-compressive failure

stress-inner/outer radius space.

The nature of these ‘‘orbits’’ was examined by plotting the maximum acoustic pressure against compressive failure stress

and depth, as shown in Fig. 23. The coloring in this figure is included to aid the eye in viewing the results. The ‘‘saddle
Fig. 22. Contour plots of maximum acoustic pressure at two times the initial outer volume diameter with a plastic inner sphere with a

modulus of plasticity of 345MPa and an initial outer radius of 60 cm.
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Fig. 23. Plots of maximum acoustic pressure at two times the initial outer volume diameter versus compressive failure stress and depth

at the same conditions as in Fig. 22.
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points’’ in Fig. 23 can be explained in terms of work done on the inner shell. At a given depth, there is a failure stress at

which the minimum acoustic energy is found. At failure stresses lower than this value, the acoustic energy rises because

progressively less energy is absorbed by the shell as it fails. As the failure stress is increased above this ‘‘saddle point’’ value,

the growth in pressure inside the gaseous volume before failure starts to increase the maximum acoustic energy.
5. Conclusions

The above analyses indicate that an implodable volume interacting with the surrounding liquid can cause significant

pressure pulses in the liquid medium. This is an important consideration for assessing the effect of the rupture of an
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underwater container on nearby or enclosing structures. Large pressure excursions generated by the initial rupture have

the potential to create damaging acoustic waves in the water. The analysis has also shown that the existence of any

interior structure inside the ruptured container, and its physical properties, can strongly reduce the strength of acoustic

waves in the surrounding liquid. The effect of an inner structure on the acoustic field in the liquid becomes most

significant when initial volumes of the inner and outer structure are of comparable sizes. While we do not pretend that

the above analysis has been complete or exhaustive, we believe that it points out a need for—and suggests possible

directions for—more detailed and thorough studies that can quantify the level of conservatism in current undersea

vehicle safety guidelines.

Future analysis should focus on the nature of the gas pressure field in the presence of an interior structure, the shape

of the inner structure, and nonuniform structural failure. As mentioned above, the failure of the inner structure has the

potential to initiate an imploding shock wave in the gas volume, and analysis developed for this scenario could prove

illuminating. Incorporating a work effect due to any deformation of the inner volume on the pressure in the

surrounding outer gas would be a significant contribution as well.
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